

DARPA META-MATERIALS WORKSHOP

Materials Needs For Advanced Navy Systems

Denis Webb
Microwave Technology Branch
Naval Research Laboratory

Ph: (202)767-3312

e-mail: webb@estd.nrl.navy.mil

September 29, 2000

Future RF System Trends

- Fewer system types- rely on multi-functionality
- Reduced manpower
- Open architecture upgradable, reconfigurable
- Low Radar Cross Section(RCS)
- Increased emphasis on small platforms, i.e. Micro-Air-Vehicles(MAVs), satellites, man-packs
- Balance of performance, risk and affordability

Technology Drivers for Emerging Systems

- High functionality per unit volume, miniaturization
- High efficiency, reduced cooling
- Increased signal throughput
- Wide instantaneous bandwidth
- High dynamic range, high isolation
- Low cost with minimal compromise in performance

RF Device Candidates for Meta-Materials

- Circulators and Isolators
- Phase shifters
- Filters

Microwave Microstrip Circulator

RF energy entering any port (1, 2, or 3) propagates through the junction in a counter clockwise direction exiting at the next available port.

Circulators and Isolators

Problems/Limitations of Present Technology

- Percentage bandwidth limited to $100\%(F_{max}/F_{min} = 3)$
- Footprint size, especially for 4+ port configurations
- Size/weight of permanent magnet bias
- Reproducibility
- Cost

Circulator Size Reduction Approaches

- Lumped element designs
- Higher dielectric constants
- Internally biased geometries

Microstrip Circulators

Baseline Design 0.500" x 0.500" (not including 50 ohm lines)

Quasi-Lumped Element (QLEC) Circulator 0.240" x 0.250"

Phase Shifters

Requirements for Emerging Applications

- Real time delay
- Low loss
- High speed
- Low power consumption
- Low cost

Advanced Multifunction RF (AMRF) Concept

Large Time Bandwidth Product Signals

Planar Phase Shifter Loss (360° at 10 GHz)

•GaAs Analog 8.5 dB

•GaAs Digital* 8 dB

•Ferroelectric 5 to 6 dB

•Ferrite 1.5 dB

•MEMS* 1.15 dB

*4-bits

Typical MMIC Phase Shifter Performance* for Active Sub-Array

Phase Control 0° or 180° (1 bit)

Time Delay Control 5 bit digital

3 psec LSB; 48psec MSB

(93 psec total)

Time Delay Accuracy +/- 1.5 psec

Total Phase Shift 0 to 390° @ 6 GHz

0 to 810° @ 18 GHz

RF Power 40 mw

VSWR 2.0:1 Max

Size 10mm x 8 mm

^{*} ITT Avionics, MAFET Thrust 2

10

0

10.0

10.5

Ferrite - Ferroelectric Composite Phase Shifter

11.0

Frequency (GHz)

11.5

0 KV/cm

12.0

0 Oe 160 Oe ----- 320 Oe

Filters

Requirements for Emerging Applications

- Small Size
- High Q (low loss/high selectivity)
- Temperature Stable
- High Linearity
- High Power Handling
- Tunable

Miniature filters

- Need for small high-Q filters is greatly expanding
 - commercial wireless
 - high dynamic range receivers for DoD
- Approaches to high Q and small size
 - bulk-acoustic-wave
 - active (GaAs FET/MMIC)
 - dielectric resonator

Dielectric Resonator Filters

- Dimensions scale by $\varepsilon^{-1/2}$
- Q decreases as ε increases with Qxf ~ constant*
 - fxQ = 200,000 for $\epsilon = 25$
 - fxQ = 5000 for $\varepsilon = 90$
- Wireless community uses coupled λ /4 lines in high ϵ monoblocks to achieve low loss with small size
 - Vol < 50 mm³ @ 1.9 GHz for 3-pole filter

*Nishikawa, MuRata, 1998 IMS Symposium

Dielectric Resonator Filters

Technical Challenges

- Improved dielectric materials: $\varepsilon > 100$, Qxf > 500,000
- Linear materials and geometries
- Ability to form complex monoblocks
- Multi-mode, multi-layer techniques
- Thermal management, temperature stability
- Packaging high isolation, integration with active circuits
- Low cost

Technical Approach

Electromagnetic Simulations of Candidate Microstructures

Quasi-static simulations

• Solves the equation

• Non-zero frequency treated with complex permittivity ε^*

Electromagnetic simulations

- Solves full Maxwell equations in a meshed model space
- Allows treatment of lossy clusters with size approaching the material skin depth
- Can include diffusive transport

Example: Quasi-static simulations of a 2-phase system near percolation

Ref: J.P. Calame, Y. Carmel, D. Gershon, and M. Rosen, "Predicting the dielectric properties of mixtures - a practical engineering approach," First World Congress on Microwave Processing, Lake Buena Vista, FL, Jan 5-9, 1997. (Invited) 10/17/00

Overview of Concept and Technical Approach

• Achieve rapid variation of dielectric permittivity with respect to frequency using <u>tailored microstructure</u> ceramic composites. Lossy material inside the matrix is arranged in <u>complex geometric patterns</u> that exhibit a spatial hierarchy of structure

- Freq. 15 μm vior will result from two medianisms. Spatial Hierarchy
 - <u>Anomalous electron diffusion</u> along the lossy structures. Diffusion distance depends on frequency, so a spatial hierarchy of structures can lead to frequency-dependent diffusion [1, 2].
 - Geometrical structures functioning as a complex 3D RC-circuit. Overall permittivity varies as the proportions of conventional and displacement current within the interwoven structures change with frequency [2, 3].
- Approach Summary: EM Microstructure Simulations ◆ Synthesis ◆ Characterization

Example of the Impact of Tailored Frequency-Response Dielectrics

Gyro-TWT for Instrumentation Radar

Dielectric-Loaded Interaction Circuit

Computed Performance with Standard 80%AIN-20%SiC Lossy Dielectric (Dielectric Properties Constant from 30-40 GHz)

Expected Performance Capability with Lossy Dielectric Varying as $\varepsilon' \sim 1/f^{1.3}$, $\varepsilon''/\varepsilon' \sim \text{Constant}$

(Estimated from growth rate calculations)

- 2.6 → projected increase in bandwidth due to improved synchronism between EM fields and the beam
- 40% projected increase in power due to better suppression of oscillations

Summary/Conclusions

- New systems concepts are placing increasing demands on both active and passive component technology
- Particularly stressing for passive components are the demands on size, bandwidth, linearity and cost
- New materials concepts can be an important tool in addressing these needs
- Efficient progress will require tightly-coupled, innovative device and materials programs supported by a strong CAD effort